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SUMMARY

In this paper a semi-implicit finite difference model for non-hydrostatic, free-surface flows is analyzed
and discussed. It is shown that the present algorithm is generally more accurate than recently developed
models for quasi-hydrostatic flows. The governing equations are the free-surface Navier–Stokes equa-
tions defined on a general, irregular domain of arbitrary scale. The momentum equations, the incom-
pressibility condition and the equation for the free-surface are integrated by a semi-implicit algorithm in
such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with
respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The incompressible Navier–Stokes equations are known as being a valid model for many
free-surface flow problems. Yet several simplified models have been derived from the Navier–
Stokes equations to simulate specific flow problems in a determinate scale. Thus, for example,
the two-dimensional vertically averaged shallow water equations are commonly used to study
the circulation in well-mixed shallow estuaries, coastal seas and lakes [1–7]. High resolution of
three-dimensional environmental flows can be obtained by solving numerically the three-di-
mensional hydrostatic primitive equations [8–12]. Three-dimensional hydrostatic models,
however, are known to be ill-posed when used with open boundaries [13,14]. Moreover,
problems where the hydrostatic approximation is no longer valid include flows over rapidly
varying slopes and short waves where the ratio of the vertical to horizontal scales of motion
is not sufficiently small.

Since these models have been derived from the Navier–Stokes equations under different
simplifying assumptions, it appears clear that an accurate and efficient algorithm that solves
directly the free-surface Navier–Stokes equations would apply to flows at different scales. One
of the most popular numerical methods that successfully simulates free-surface flows for the
Navier–Stokes equations is the marker-and-cell (MAC) method developed by Harlow and
Welch [15]. The MAC method has been improved in several ways (see [16,17]), but the CFL
stability restriction, relating the time step to the spatial discretization and to the free-surface
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wave speed, inhibits this method from being applied to three-dimensional geophysical flows
with a sufficiently fine grid to resolve the small scale non-hydrostatic component of the flow.
Moreover, a direct numerical approach to determine the three-dimensional pressure field is
much too expensive from the computational point of view.

Recently, the three-dimensional Navier–Stokes equations have been integrated by a semi-
implicit, fractional step method, where the hydrostatic pressure component is determined first
and the non-hydrostatic component of the pressure is computed in a subsequent step [18–21].
This method is relatively simple, numerically stable even at large Courant numbers, and is
suitable for simulations of complex three-dimensional flows where a small deviation from
hydrostatic pressure is allowed.

In the present paper, the above scheme is further improved by including a correction for the
free-surface in such a fashion that the new free-surface elevation is implicitly coupled with the
non-hydrostatic pressure and with the new velocity field. In so doing, the splitting error is
reduced, the resulting algorithm is locally and globally mass conservative, and applies to a
wider class of free-surface problems ranging from hydrostatic to fully non-hydrostatic.

For hydrostatic and nearly hydrostatic flows, the present algorithm remains computationally
competitive with the corresponding hydrostatic model. This method is accurate but requires a
significant additional computational effort when applied to fully non-hydrostatic flows. In
these cases, however, any hydrostatic model will yield totally different, and hence non-physical,
results.

2. GOVERNING EQUATIONS

The governing three-dimensional, primitive variable equations describing the free-surface flows
are the Navier–Stokes equations. Such equations express the physical principle of conservation
of mass and momentum. The momentum equations for an incompressible fluid have the
following form
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where u(x, y, z, t), 6(x, y, z, t) and w(x, y, z, t) are the velocity components in the horizontal
x-, y- and vertical z-direction; t is the time; p(x, y, z, t) is the normalized pressure defined as
the pressure divided by a constant reference density; g is the gravitational acceleration; and n

is the kinematic viscosity coefficient. A complete model for field scale application would
include the Coriolis acceleration, the baroclinic terms to account for density variations and
non-constant turbulent viscosity coefficients (see [14,20,21]). For the sake of simplicity these
terms have been omitted in the present work.

The mass conservation is expressed by the following incompressibility condition
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Integrating the continuity equation (4) over the depth and using the kinematic condition at
the free-surface [10] leads to the following free-surface equation
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where h(x, y) is the water depth measured from the undisturbed water surface and h(x, y, t) is
the free-surface elevation.

The pressure p(x, y, z, t) in Equations (1)–(3) can be decomposed into the sum of its
hydrostatic and a non-hydrostatic component. The hydrostatic pressure component is deter-
mined from the vertical momentum equation (3) by neglecting the convective and the viscous
acceleration terms. Thus,

p(x, y, z, t)=g [h(x, y, t)−z ]+q(x, y, z, t), (6)

where q(x, y, z, t) denotes the non-hydrostatic, or hydrodynamic pressure component. Thus,
the momentum equations (1)–(3) can also be written as
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When the hydrostatic approximation is made, Equation (9) is neglected and q(x, y, z, t)=0
is assumed throughout. In this case, the non-hydrostatic component of the pressure is assumed
not to have effect on the resulting flow.

The boundary conditions at the free-surface are approximated by prescribing the wind
stresses as

n
(u
(z

=gT(ua−u), n
(6

(z
=gT(6a−6), (10)

where gT is a non-negative wind stress coefficient and ua and 6a are the wind velocity
components in the x- and in the y-direction respectively. At the bed, the bottom friction is
specified by

n
(u
(z

=gBu, n
(6

(z
=gB6, (11)

where gB is a non-negative bottom friction coefficient. Typically, gB can be derived from a
turbulent boundary layer assumption.

3. NUMERICAL APPROXIMATION

In order to obtain an efficient numerical method whose stability is independent from the
free-surface wave speed, wind stress, bottom friction and vertical viscosity, a semi-implicit
fractional step scheme is derived. In the first step, the implicit contribution of the non-hydro-
static pressure is neglected and the gradient of surface elevation in the horizontal momentum
equations (7) and (8), and the velocity in the free-surface equation (5), are discretized by the
u method [12]. Moreover, for stability, the wind stress, the vertical viscosity and the bottom
friction will be discretized implicitly. In the second fractional step the provisional velocity and
surface elevation are corrected by including the non-hydrostatic pressure terms, which are
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calculated in such a fashion that the resulting velocity field is locally and globally mass
conservative.

The physical domain is subdivided into NxNyNz rectangular cells of length Dx, width Dy and
height Dzk=zk+1/2−zk−1/2 respectively, where zk91/2 are given level surfaces. Each cell is
numbered at its center with indices i, j and k. The discrete u velocity is then defined at half
integer i and integers j, k ; 6 is defined at integers i, k and half integer j ; w is defined at integers
i, j and half integer k ; q is defined at integers i, j and k ; h is defined at integers i, j. Finally,
the water depth h(x, y) is specified at the u and 6 horizontal grid points.

3.1. First step: hydrostatic pressure

The first step of calculations is performed by neglecting the implicit contribution of the
non-hydrostatic pressure. The resulting velocity field and water surface elevation at the new
time level are not yet final and will be denoted by ũ, 6̃, w̃ and h̃ respectively. A semi-implicit
discretization for the momentum equations (7)–(9) takes the following form
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where the vertical space increment Dz is usually defined as the distance between two
consecutive level surfaces, except near the bottom and near the free-surface, where Dz is the
distance between a level surface and bottom or free-surface respectively. Thus, in general, Dz
depends on the spatial location, and near the free-surface it also depends on the time step. The
vertical space increment Dz is also allowed to vanish in order to account for variable
geometries and for the wetting and drying of tidal flats. Of course, the corresponding
momentum equation (12), (13) or (14) is not defined at a grid point characterized by Dz=0.

In Equations (12)–(14), F is a finite difference operator that includes the explicit discretiza-
tion of the convective and horizontal viscosity terms. A particular form for F can be given in
several ways, thus for example, by using an Eulerian–Lagrangian scheme (see, [10]). Equations
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(12)–(14) also include appropriate discretizations of the boundary conditions (10) and (11) at
the free-surface and at the bottom. For stability, the implicitness factor u has to be chosen in
the range 1

25u51 (for details see [12]).
For each i, j, the set of equations (14) forms a linear, tridiagonal system with unknowns

w̃ i, j,k+1/2
n+1 on the same water column. The coefficient matrix of these systems is symmetric and

positive definite. Thus, the provisional vertical component of the velocity can be readily
determined by a direct method. Equations (12) and (13) also constitute a set of linear
tridiagonal systems, that are however, coupled to the unknown water surface elevation h̃n+1.
In order to determine h̃ i, j

n+1, and for numerical stability, the provisional velocity field is
required to satisfy, for each i, j, the discrete analogue of the free-surface equation (5),
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where m and M, 15m5M5Nz, denote the lower and upper limit for the k-index represent-
ing the bottom and the top finite difference stencil respectively. Strictly speaking, m and M
depend on their spatial location and M may also change with the time level to account for the
free-surface dynamics. For notational simplicity, however, subscripts and superscript to m and
M shall be omitted.

Upon multiplication by Dz i+1/2, j,k
n and Dz i, j+1/2,k

n , Equations (12) and (13) are written in
matrix notation as

Ai+1/2, j
n U0 i+1/2, j

n+1 =Gi+1/2, j
n −ug

Dt
Dx

(h̃ i+1, j
n+1 − h̃ i, j

n+1)DZi+1/2, j
n , (16)

Ai, j+1/2
n V0 i, j+1/2

n+1 =Gi, j+1/2
n −ug

Dt
Dy

(h̃ i, j+1
n+1 − h̃ i, j

n+1)DZi, j+1/2
n , (17)

where U0 , V0 , DZ, G and A are defined as follows:
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with ak=nDt/Dzk.
Equation (15) can also be written using vector notation as
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Formal substitution of the expressions for U0 i91/2, j
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yields

h̃ i, j
n+1−gu2 Dt2

Dx2 {[(DZ)TA−1DZ]i+1/2, j
n (h̃ i+1, j

n+1 − h̃ i, j
n+1)

− [(DZ)TA−1DZ]i−1/2, j
n (h̃ i, j

n+1− h̃ i−1, j
n+1 )}

−gu2 Dt2

Dy2 {[(DZ)TA−1DZ]i, j+1/2
n (h̃ i, j+1

n+1 − h̃ i, j
n+1)− [(DZ)TA−1DZ]i, j−1/2

n (h̃ i, j
n+1− h̃ i, j−1

n+1 )}

=d i, j
n −u

Dt
Dx

{[(DZ)TA−1G]i+1/2, j
n − [(DZ)TA−1G]i−1/2, j

n }

−u
Dt
Dy

{[(DZ)TA−1G]i, j+1/2
n − [(DZ)TA−1G]i, j−1/2

n }. (19)

Since the matrix A is an M-matrix, A−1 has non-negative elements everywhere. Therefore,
the quantity (DZ)TA−1DZ is itself non-negative everywhere. Hence, Equation (19) constitutes
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a five-diagonal system of equations for the unknowns h̃ i, j
n+1. This system is strictly diagonally

dominant, symmetric and positive definite, thus its unique solution can be determined by
preconditioned conjugate gradient iterations until the residual norm becomes smaller than a
given tolerance eh. Once the new free-surface location has been computed, Equations (16) and
(17) are used to determine U0 i+1/2, j

n+1 and V0 i, j+1/2
n+1 throughout the computational domain.

3.2. Second step: non-hydrostatic correction

In the second step of calculations, the new velocity field ui+1/2, j,k
n+1 , 6 i, j+1/2,k

n+1 , wi, j,k+1/2
n+1 and

the new water surface elevation h i, j
n+1 are computed by correcting the provisional values after

including the non-hydrostatic pressure terms. Specifically, the discrete momentum equations
are taken to be
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and, in each computational cell below the free-surface, the discretized incompressibility
condition (4) in finite volume form is taken to be
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At the free-surface, the difference approximation of Equation (5) is
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which, by using (23), can also be written as
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By assuming that the pressure in the surface cells is hydrostatic, the pressure correction qi, j,M
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is obtained from g(h−z)=g(h̃−z)+q. Hence, Equation (25) becomes
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n+1 . (26)
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An equation for the non-hydrostatic pressure qi, j,k
n+1 is derived by substituting the expressions

for the new velocities from (20)–(22) into (23) and (26) respectively. The following finite
difference equations are obtained

uDt
�(qi+1, j,k

n+1 −qi, j,k
n+1)Dz i+1/2, j,k

n − (qi, j,k
n+1−qi−1, j,k

n+1 )Dz i−1/2, j,k
n

Dx2

+
(qi, j+1,k

n+1 −qi, j,k
n+1)Dz i, j+1/2,k

n − (qi, j,k
n+1−qi, j−1,k

n+1 )Dz i, j−1/2,k
n

Dy2

+
(qi, j,k+1

n+1 −qi, j,k
n+1)

Dz i, j,k+1/2
n −

(qi, j,k
n+1−qi, j,k−1

n+1 )
Dz i, j,k−1/2

n

n
=

ũ i+1/2, j,k
n+1 Dz i+1/2, j,k

n − ũ i−1/2, j,k
n+1 Dz i−1/2, j,k

n

Dx
+
6̃ i, j+1/2,k

n+1 Dz i, j+1/2,k
n − 6̃ i, j−1/2,k

n+1 Dz i, j−1/2,k
n

Dy

+w̃ i, j,k+1/2
n+1 −w̃ i, j,k−1/2

n+1 =0, k=m, m+1, . . . , M−1 (27)

and

uDt
�(qi+1, j,M

n+1 −qi, j,M
n+1)Dz i+1/2, j,M

n − (qi, j,M
n+1 −qi−1, j,M

n+1 )Dz i−1/2, j,M
n

Dx2

+
(qi, j+1,M

n+1 −qi, j,M
n+1)Dz i, j+1/2,M

n − (qi, j,M
n+1 −qi, j−1,M

n+1 )Dz i, j−1/2,M
n

Dy2

−
(qi, j,M

n+1 −qi, j,M−1
n+1 )

Dz i, j,M−1/2
n

n
−

qi, j,M
n+1

guDt

=
h̃ i, j

n+1−d i, j
n

uDt
+

ũ i+1/2, j,M
n+1 Dz i+1/2, j,M

n − ũ i−1/2, j,M
n+1 Dz i−1/2, j,M

n

Dx

+
6̃ i, j+1/2,M

n+1 Dz i, j+1/2,M
n − 6̃ i, j−1/2,M

n+1 Dz i, j−1/2,M
n

Dy
−w̃ i, j,M−1/2

n+1 . (28)

The set of equations (27)–(28) form a seven-diagonal linear system. This system is diagonally
dominant, with a strict inequality corresponding to Equation (28), moreover it is symmetric
and positive definite. Thus, it can be solved by preconditioned conjugate gradient iterations
until the residual norm is smaller than a given tolerance eq.

At the solid impenetrable boundaries, the condition of zero normal flux is imposed through
Equations (20)–(22), which translates to a Neumann-type of boundary conditions on Equa-
tions (27) and (28). At the open boundaries either the normal velocity or the non-hydrostatic
pressure should be specified. Accordingly, this translates into the Neumann- or Diriclet-type of
boundary condition for Equations (27) and (28).

Once the non-hydrostatic pressure is computed, the corresponding horizontal velocity field
is readily determined from Equations (20) and (21), while the vertical component of the
velocity can be obtained, equivalently, either from (22) or from the incompressibility condition
(23) which, by setting wi, j,m−1/2

n+1 =0 gives

wi, j,k+1/2
n+1 =wi, j,k−1/2

n+1 −
ui+1/2, j,k

n+1 Dz i+1/2, j,k
n −ui−1/2, j,k

n+1 Dz i−1/2, j,k
n

Dx

−
6 i, j+1/2,k

n+1 Dz i, j+1/2,k
n −6 i, j−1/2,k

n+1 Dz i, j−1/2,k
n

Dy
, k=m, m+1, . . . , M−1. (29)
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This latter choice guarantees that the resulting velocity field is discrete divergence free for any
value of the tolerance eq. This choice enables the above algorithm to perform hydrostatic
calculations by choosing eq to be a sufficiently large value.

Finally, the new free-surface elevation is given by the hydrostatic relation

h i, j
n+1= h̃ i, j

n+1+
qi, j,M

n+1

g
(30)

and the vertical increments Dz are updated in order to account for the new free surface
location.

4. PROPERTIES OF THE METHOD

In the present scheme the local mass conservation is assured by the finite volume form (23)
used to discretize the incompressibility condition (4). Also, global mass conservation is
guaranteed by Equation (24), which is a conservative discretization of the free-surface equation
(5).

From a purely algebraic point of view, the present formulation does not require the
calculation of the provisional free-surface as determined in the first fractional step by the linear
system of Equation (19). Indeed, by choosing a tolerance eh sufficiently large so that no
iterations will be required by the conjugate gradient method to solve system (19), the complete
pressure field, including the water surface elevation, will be entirely determined in the second
computational step by system (27) and (28), even in the case of hydrostatic flow. For
computational convenience, however, accurate calculation of the provisional free-surface from
the system of Equation (19) provides a better starting point for the iterations required by the
preconditioned conjugate gradient method that determines the non-hydrostatic pressure. This
is particularly the case for hydrostatic and quasi-hydrostatic calculations.

It is interesting to point out that the hydrostatic solution (also obtained with the semi-im-
plicit algorithm described in [12]) can be naturally computed from the above non-hydrostatic
algorithm by setting qi, j,k

0 =0, and by choosing a tolerance eq sufficiently large so that no
iterations will be required by the conjugate gradient method to solve system (27) and (28). In
this way the resulting hydrodynamic pressure component qi, j,k

n+1 remains identically zero at
every time step and the hydrostatic velocity field results from (20), (21), (29) and (30) as a
particular case.

Another interesting consideration arises from the fact that if only one vertical layer is
specified, one has 1=m=M=Nz and the vertical spacing Dz represents the total water depth.
In this particular case, the discrete incompressibility condition (23) does not apply and
Equation (28) forms a linear and homogeneous system. This implies that the resulting pressure
correction is identically zero and, accordingly, the calculations of the second fractional step are
not required. Moreover, one can easily verify that in this case, Equations (12), (13) and (19)
are a consistent semi-implicit discretization of the two-dimensional, vertically integrated
shallow water equations [5].

The above property of the present algorithm leads to a general purpose computer code that
can be used for both two-dimensional vertically averaged problems as well as hydrostatic and
non-hydrostatic three-dimensional problems. More importantly, when the three-dimensional
model is applied to a typical coastal plain tidal embayment characterized by deep channels
connected to large and flat shallow areas, a great saving in computing time and memory
requirement is achieved because the deep channels are correctly represented in three dimen-
sions while the flat shallow areas are represented only in two dimensions.
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For 1
25u51, the implicit coupling of the water surface elevation to the new velocity field

renders this method unconditionally stable with respect to the speed of propagation of surface
waves [12]. Additionally, the time step is not limited by wind stress, vertical viscosity or bottom
friction because of the implicit discretization used for these terms in the first fractional step.
When an Eulerian–Lagrangian discretization is used for the convective terms [10], a mild
limitation on the time step is imposed by the explicit discretization of the horizontal eddy
viscosity terms and is given by

Dt5
1

2n
� 1
Dx2+

1
Dy2

� . (31)

This condition is not a severe limitation in field scale applications, where the horizontal
discretization steps Dx and Dy, typically are chosen to be much larger than Dz. Such a
consideration justifies the choice of an implicit discretization for the wind stress, vertical
viscosity and bottom friction from which the tridiagonal matrix A results.

5. APPLICATIONS

This section shows the importance of the non-hydrostatic pressure in situations that are
relevant in several applications. In general, one might argue that hydrostatic models are
capable of predicting the vertical structure of mainly horizontal flow. However, if the vertical
component of the velocity is also of some importance, then hydrostatic models will not be
accurate.

5.1. Oscillating basin

The first example deals with non-breaking waves resulting for a relatively large ratio of total
depth H=h+h to the wave length l. In such a case, the hydrostatic pressure assumption does
not apply, and for sufficiently small wave amplitude, the wave celerity c is approximated by
the following dispersion relation:

c=
'gl

2p
tanh

�2pH
l

�
. (32)

A square basin of length L=10 m and depth h=10 m is discretized with 400 square cells
of equal sides Dx=Dz=0.5 m. Starting with zero initial velocity, the flow is driven by an
initial free-surface of constant slope h=0.02x−0.1. By neglecting bottom friction, horizontal
and vertical viscosity, the calculation is carried out with a time step Dt=0.1 s. The expected
solution consists of a standing wave of length l=2L and frequency f=c/l, where c is given
by the above dispersion relation. Figure 1 shows the water surface elevation at x=10 m
obtained with the present non-hydrostatic model and with an early, quasi-hydrostatic version
of the present model [21]. The results clearly indicate that the wave amplitude computed with
the present algorithm is in much better agreement with the analytical result approximated by
the dispersion relation (32).

5.2. Wa6e propagation o6er a bar

The second example is concerned with spatial evolution of steep waves propagating over a
longshore bar. To this purpose, the author refers to the Scheldt flume experiment carried at
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Figure 1. Free-surface wave of small amplitude.

Delft Hydraulics [22]. The flume has an overall length of 30 m. The bottom profile is shown
in Figure 2. The still water depth was 0.4 m and reduced to 0.1 m over a submerged
trapezoidal bar. At the end of the flume, a plane beach with a 1:25 slope serves as a wave
absorber. The computational domain is discretized using Dx=Dzk=2.5 cm. A sinusoidal wave
of amplitude 1 cm and period T=2.02 s is specified at the left open boundary. The time step
chosen for this simulation is Dt=0.025 s. The resulting water surface elevation at three
stations located at 13.5, 15.7 and 19 m from the open boundary is compared with the
measurements in Figures 3–5 respectively. This example illustrates the potential of the present
model in dealing with complex wave problems, even using a coarser mesh and larger time step
than previous quasi-hydrostatic calculations [21]. For this example, the hydrostatic solution is
totally different and of course, unrealistic.

Figure 2. The wave flume geometry.
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Figure 3. Water surface elevation at 13.5 m from the open boundary.

5.3. The Venice Lagoon

Finally, the present method has also been applied to simulate the three-dimensional flow in
the Lagoon of Venice. The Lagoon of Venice covers an area of about 50 km2 and consists of
several inter-connected narrow channels with a maximum width of 1 km, and up to 50 m deep
encircling large and flat shallow areas. The Lagoon is connected to the Adriatic Sea through
three narrow inlets, namely Lido, Malamocco and Chioggia. A considerable portion of the
Lagoon of Venice consists of tidal flats and proper treatment of flooding and drying is
essential. Tidal waves propagate from the Adriatic Sea into the Lagoon through the three
inlets. The Lagoon has been covered with a 672×846×200 finite difference mesh of
Dx=Dy=50 m and with the maximum Dz being 0.25 m. Thus, the total number of grid points
is 113702400, but only 1637508 of these are active. This fine computational mesh allows for
a very accurate description of the tree-like structure of the main channels as shown in Figure

Figure 4. Water surface elevation at 15.7 m from the open boundary.
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Figure 5. Water surface elevation at 19 m from the open boundary.

6. The fluid is driven at the three inlets, where an M2 tide of 0.25 m amplitude and 12-h
period has been specified. Figure 7 shows the maximum vertical speed obtained with and
without the hydrostatic approximation and with a time step Dt=15 min. This calculation
was repeated with a time step Dt=0.15 min and with a shorter driving wave of a 0.12-h
period. Figure 8 shows a higher discrepancy between the hydrostatic and the non-hydro-
static results, thus indicating that, as expected, the hydrostatic approximation does not
apply to medium and short waves.

6. CONCLUSIONS

A finite difference method for solving the three-dimensional Navier–Stokes equations has
been outlined. The implicit coupling between the momentum and the free-surface equation
renders this scheme unconditionally stable with respect to the surface wave speed. More-
over, since in geophysical flows the non-hydrostatic pressure is much smaller than the
hydrostatic pressure, a significant improvement in computational efficiency has been
achieved by decoupling the hydrostatic from the non-hydrostatic pressure. Thus, the hydro-
static pressure is determined by solving a five-diagonal linear system defined over the
two-dimensional x–y domain, while to determine the non-hydrostatic pressure, fewer itera-
tions on a larger seven-diagonal system are sufficient. The present algorithm is rather
general, numerically stable and naturally reduces to a simpler hydrostatic model as a
particular case. The computational examples given in this paper show that this algorithm is
suitable for accurate simulation of geophysical flows as well as problems characterized by
medium and short waves for which hydrostatic pressure alone is insufficient to obtain
correct simulations. It can be concluded that this method enhances the range of problems
that can be solved by computational methods for free-surface flows.
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Figure 6. High resolution of the Venice Lagoon.
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Figure 7. Maximum vertical speed in long waves.

Figure 8. Maximum vertical speed in medium waves.
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